
Scripting

Scripting with the WaveTrak Toolbox

Earlier chapters introduced some of the fundamentals of
program flow and data storage techniques used by WaveTrak.
This chapter will give you more detailed information about how
WaveTrak goes about converting and transferring data from an
external signal source to a trace card in your stack. Although
most of the examples concern A/D conversion with the A/D
version of WaveTrak, the concepts are identical for waves
imported from disk or the clipboard. Once you understand the
basics, you will be able to create your own scripts easily, since
all of the difficult aspects of data acquisition and organization
are taken care of automatically. This chapter assumes that you
have a working knowledge of HyperTalk. You should be
familiar with concepts such as handlers, messages and global
variables. You should also be aware how messages are passed
up the HyperCard hierarchy and how to edit scripts. If any of
the standard HyperCard commands mentioned in this chapter are
unfamiliar to you, please consult your HyperCard reference
manuals.

Waves and Data Types
In WaveTrak, a wave is defined as a series of points regularly spaced in time (or
any other dimension you define). The points (or elements) of a wave are held in an
array, which is a block of contiguous memory locations in RAM containing the
values of the points (the y-values). Since the points are always regularly spaced in
time, the x-values (time) are not stored but derived from the point number (the
index) and the original sampling interval. Unlike the numbering convention in
HyperCard, points in WaveTrak waves are numbered beginning with zero up to
one less than the number of points in the wave. For example, if you have a wave
with 1024 points, the point number of the first sample is always zero, and the last
point would be numbered 1023. The first point of any wave always corresponds to

1

Scripting

0 µs; at a sampling interval of 10 µs/sample (100 kHz), the last point in the
example would correspond to time = 10230 µs = 10.23 ms. Since each point
actually represents a signal over a short stretch of time equal in duration to the
sample interval, the total sample window will be 10.24 ms in duration. Fig. 9-1
illustrates this important point:

2

Scripting

...point no.
time

sample interval

sample window time

0 1 2 1022 10231021
0 10 20 10220 10230 µs10210

10 µs

10240 µs

...

Fig.9-1: relationship between the sample interval, point number (or index) and the total sample window
time.

Note that in HyperCard, items and lines in a list are numbered beginning with 1.

The elements in a wave can be represented either as integers (up to 16 bits) or single precision (32-bit) floating point
numbers; the type of a wave is determined by which representation is used for its elements. Values read from the
A/D converter are always integers. The on-board converter on the MacADIOS II board has 12 bits of resolution and
can be configured as straight binary (positive values ranging from 0 to 4095) or two's complement (positive and
negative values ranging from -2048 to 2047). A wave consists of more than just a series of elements, but also
contains a header identifying the data type (floating point or integer, and if integer, how many bits of resolution),
how many points it has as well as other information used internally. You can find out the type of a wave by calling
the function getWaveType in the stack script. Table 1 lists some of the more common WaveTrak data types.

3

Scripting

Table 1: list of codes used to identify common WaveTrak data types. Integer types are identified by the
number of bits of resolution; this number is negated if the type is a signed integer.

Code Data type
F 32-bit single precision floating point.
-12 12-bit signed (2's complement) binary

integer (-2048 to 2047).
12 12-bit unsigned binary integer (0 to 4095).
-16 16-bit signed (2's complement) binary

integer (-32768 to 32767).
16 12-bit unsigned binary integer (0 to 65535).

Many XCMDs that generate waves mathematically or operate on existing waves give you the option of setting the
result type by passing a code; if you pass zero, the result will be of the same type as that of the wave you passed to
the XCMD.

Example 1:

global theWave
AcqWave sampleInterval, npoints, startMUX, endMUX,"theWave"
put getWaveType (theWave) -- no quotes, wave is passed by value

The AcqWave XCMD acquires a wave from the 12-bit A/D converter. Assuming that it is jumpered for 12-bit
two's complement coding, line 3 will write '-12' in the message box. Each element in theWave will be a signed
12-bit integer between -2048 and 2047. getWaveType requires that you pass waves by value, that is, without

enclosing the variable name containing the wave in quotes.

4

Scripting

Example 2:

global theWave
AcqWave sampleInterval, npoints, startMUX, endMUX,"theWave"
put "F" into resultType
put 0 into K
put AddWaveK ("theWave",K, resultType) into theWave

Here, a 12-bit wave is again acquired, and a constant is added to each element. The result still ranges from -2048 to
2047, but will be a floating point type, because the resultType parameter was set to "F" and forced AddWaveK

to return a floating point wave. You can use this technique (adding zero) to convert from one type to another.

Example 3:

global w0,theWave
AcqWave sampleInterval, npoints, startMUX, endMUX,"theWave"
put 0 into resultType
put AddWaves ("w0","theWave",resultType) into w0

w0 was created elsewhere and was sent to you as a global. All you want to do is to add a newly acquired wave to
w0. You don't know the data type of w0, and you don't want to change it. Passing zero in resultType will return
the same type as the first wave (w0) in the AddWaves parameter list. Use a code of zero to preserve the original

type. This avoids the extra step of having to find out the wave type first. In fact, you will use a code of zero most of
the time unless you have a specific reason for changing the data type of a wave.

5

Scripting

Technical note:

Users familiar with HyperTalk and more traditional programming languages are probably wondering
how raw integer or floating point arrays can be stored in HyperCard variables and fields. The problem is
that HyperCard data structures are always null-terminated, and assume that only ASCII values will be
stored in them. Therefore, anytime your raw data would have a zero byte, and you simply copied it to a
HyperCard variable, this would signal the end of your data and HyperCard would ignore the rest.
WaveTrak therefore performs an additional step where it encodes and compresses your raw data into a
HyperCard-compatible format. Typically a 1000-point, 12 or 16 bit integer wave can be stored in a little
more than 1000 bytes, a 2:1 compression. Floating point waves are not compressed, but must be
encoded, resulting in a size slightly more than 4 bytes per element. Line 12 of the GetWaveStats

XFCN contains the size, in bytes, of the encoded waveform.

Scripts
The overall structure of the WaveTrak environment was carefully designed so that
power and flexibility is available, but not at the expense of ease of use. By
extending the standard HyperTalk language with the WaveTrak data acquisition
toolbox, sophisticated operations, such as those described in earlier chapters, can
be easily assembled using only HyperTalk scripts. This section describes two basic
acquisition buttons, step by step. Once you become comfortable with these two
scripts, the best way to learn more is to examine other scripts; comments have been
included throughout to explain important points.

Let's go over the script of the 'Single' button, line by line, to see how simple
acquisition is done. More complicated paradigms can be easily programmed by
starting with this script and adding functions as needed. Below is a listing of the
script, with line numbers added so the following discussion can clearly refer to
specific parts of the code (note that some of the longer lines [22 for example] will
wrap in the listing below, but in fact belong in a single line in the script):

1 on mouseUp
2 -- Acquires a single wave from A/D channel selected
3 -- in pop-up menu in trace card.

4 -- Copyright © 1991 Ortex Systems Inc. All rights
reserved.

6

Scripting

5

-
6 ----------------- PARAMETERS

7

-

8 -- none

9

-

10 global HardwareOK,XCMDErr,timeStamp
11 global sampleInterval,npoints,FSTable
12 global theWave

13 put the seconds into timeStamp

14 put bg fld "ADChannelFld" in cd "StdTraceCard" into
startMUX 15 put startMUX into endMUX

16 -- acquire the wave
17 AcqWave sampleInterval, npoints, startMUX,
endMUX,"theWave"

18 -- did an error occur?
19 if XCMDErr=0 then

20 newTrace -- create a new trace card

21 put theWave into bg field "data" -- store the wave

22 put cd fld "HParamLegends" in cd "SysParams" into bg
fld
 "HParamLegends"

7

Scripting

23 put cd fld "ReadingLegends" in cd "SysParams" into
bg fld
 "ReadingLegends"
24 put cd fld "Readings" in cd "SysParams" into bg fld
 "Readings"

25 -- copy default params
26 get cd fld "HParams" in cd "SysParams"
27 repeat with j=1 to 3
28 put line j in it into line j in bg fld "HParams"
29 end repeat

8

Scripting

30 get line (startMUX+1) in FSTable -- A/D full scale,
units
31 put it into line 4 in bg fld "HParams"

32 else
33 ErrNum XCMDErr
34 end if

35 send openCard -- plot the wave
36 select after last char of field "commentField"
37end mouseUp

Most buttons respond to 'mouseUp' messages, and lines 1 and 37 enclose the
handler which intercepts this message when the button is pressed, executing all
instructions between on mouseUp and end
mouseUp. Lines 2 to 9 are comments describing what the button does, and what
kinds of parameters it expects from you. The Single button has no parameters.
Lines 10 to 12 declare all the global variables used in the handler. Globals are
necessary for two reasons. First, they contain needed data that was defined
elsewhere. For example, sampleInterval is updated when you enter a new
sampling rate in the Scope card. By placing the value into a global, all scripts in
the stack have access to this value. WaveTrak places important values of
widespread interest to many scripts into globals. The chapter on WaveTrak
Globals describes the standard global variables and what they are used for.

The second reason for using globals is that XCMDs can only return data in a global
variable. For example, theWave must be declared a global so that the AcqWave
XCMD (line 17) can find this variable in which to return the digitized result. Line
13 saves the current date and time (the seconds is a standard HyperCard
command) in timeStamp so that the time of acquisition can be later written to
the appropriate field in the trace card. Line 14 reads which A/D channel is
currently selected in the pop-up menu under the Single button; since we're
acquiring only one channel, the starting and ending A/D multiplexer (MUX for
short) channels are the same (line 15).

Line 17 calls the XCMD that digitizes the signal; sampleInterval (in µs) and
npoints (the number of points/wave) are globals updated in the Scope card. One
very important point here is that the name of the global receiving the data is

9

Scripting

passed (i.e. "theWave" in double quotes), and not the value of the global without
the quotes. This holds true for all XCMDs/XFCNs returning data in global
variables. Here are some examples illustrating this very important point:

10

Scripting

Correct

on mouseUp
global theWave
...
-- pass the name as a quoted string
AcqWave sampleInterval, npoints, startMUX,

endMUX,"theWave"
-- or put the name in a variable first, then pass the

variable
put "theWave" into gName
AcqWave sampleInterval, npoints, startMUX, endMUX, gName

end mouseUp

In the above segment, the name of the global theWave is first passed explicitly as a
quoted string. Its name is then copied to a variable (gName, which need not be global
itself), and the contents of gName is passed without quotes. Both forms are acceptable.

Incorrect

on mouseUp
...
AcqWave

sampleInterval,npoints,startMUX,endMUX,"theWave"
end mouseUp

In this example, theWave was not declared as a global. XCMDs can only return
values in globals.

11

Scripting

12

Scripting

on MouseUp
global theWave
...
-- theWave passed by value, without quotes: incorrect
AcqWave sampleInterval,npoints,startMUX,endMUX,theWave

end mouseUp

This is also incorrect, because, although theWave was declared as a global, it was
then passed by value without quotes. XCMDs that return data in globals must
receive the name(s) of the globals.

Technical note:

Programmers will recognize this as a way of passing a variable by reference rather than by value.
XCMDs can only return data in global variables and require the name of the global, so they can in turn
pass it in a 'SetGlobal' callback. The second example above is incorrect but will not generate an error.
Instead, a global variable 'theWave' will be automatically created by the SetGlobal callback.
Nevertheless, it is good programming practice to explicitly declare theWave as a global in your handler

to avoid confusion.

This technique allows you to simulate an array of globals in HyperCard by passing a variable containing a comma-
delimited list of global names. See the DrawWaveCoords XCMD and the TrOverlay handler in the trace card

background script for examples of how arrays of waves are implemented in WaveTrak.

All XCMDs and XFCNs report errors in the global XCMDErr. Line 19 checks to see if AcqWave completed

successfully. If no error occurred, all XCMDs return zero in this global. A list of all WaveTrak errors and their
meaning appears in a later chapter.

If all went well, line 19 directs the flow of execution towards creating a new trace card by calling newTrace in the

stack script. The mark of the new card will be the same as that of the previous trace; the first trace under a root
defaults to 'A'. Line 19 saves the digitized signal (placed in theWave by AcqWave) in the background field 'data'.

This hidden field stores a single wave in each trace. Because the current version of HyperCard limits the size

13

Scripting

of fields to 30000 characters (bytes), this limits the encoded size of waves. This translates into about 29500 points
for integer waves and about 7400 points for floating point.

Technical note:

The size of compressed waves will depend on the data. WaveTrak may be unable to compress some
very noisy integer waves, and will simply encode them into a HyperCard-compatible format. These
waves can require more than two bytes per point and will further limit the number of points that can be
saved in the data field. There is no way to predict how large an encoded wave will be. Although fields
can only store 30000 bytes, variables are limited only by available RAM. Therefore you can acquire and
manipulate very large arrays, but you can only save 30000 bytes in a field. In fact, using 32-bit
addressing and virtual memory, you can perform calculations on huge arrays containing millions of
points, although swapping these large arrays to and from disk will slow processing considerably.

This script does not check the size of theWave; if you attempt to save more than 30000 characters in the data field,
HyperCard will generate an error. Checking the size of theWave is left as an exercise. Fields are automatically

written to disk and this is how waves are permanently stored (no need to issue Save commands in HyperCard). This
time, you are putting the contents of theWave (and not its name) into the field 'data', so no quotes here. Lines 22

and 23 copy the default legends from the System Parameters card for the Hardware Parameters and Readings fields,
and default Readings are copied by line 24 into the Readings field. You can copy other readings into this field if you
wish. For instance, say you take a temperature measurement with each acquisition; you can write over the default
value of 37° in line 1 of the Readings field.

Because no digital or analog pulses were delivered with this simple button, only the first three lines of the Hardware
Parameters field are relevant, and only the first three default values are copied from the System Parameters card by
lines 26 to 29. Note that WaveTrak ensures that the values in the System Parameters card always match the globals
(such as sampleInterval and npoints) so it's safe to take the values either from the Hardware Parameters field or
from the globals. The fourth line of the Hardware Parameters field however, will depend on the A/D channel
selected; the FSTable global holds a copy of the 'Full-scale' column in the 'External A/D Gain' table (see Fig. 6-8).
The line corresponding to the selected A/D channel is taken from this global and copied to line 4 of the Hardware
Parameters field (1 is added to startMUX because A/D channels are numbered 0 to 7, while HyperCard line

numbers range from 1 to 8). This completes the acquisition, trace creation and parameter update.

14

Scripting

If you acquire other readings from other channels, simply write the appropriate legends and results in whichever line
of the Hardware Parameters and/or Readings fields you wish. There is only one restriction: WaveTrak depends on
the values in the first four lines of the Hardware Parameters field to correctly draw and scale your wave when you
open a new card trace. You must place the correct data into these lines, as illustrated in the Single button.

If an error occurred during the acquisition, line 33 calls the ErrNum handler in the stack script which puts up a

dialog box with an error message; the message is taken from the field in the ErrorList card.
Line 35 sends an openCard message to display your new wave (as if you just jumped to this card from elsewhere),
and line 36 places the text insertion point in the trace comment field so the trace is ready to accept typed comments
after the acquisition.

Multiple button:

This script illustrates how multiple channels are acquired and stored, and how arrays of waves are manipulated in
WaveTrak. The version shown below assumes that the converter is jumpered for differential input and therefore
acquires a maximum of 8 A/D channels. Only those lines that are different from the 'Single' button will be explained
in detail, so please refer also to the discussion above:

1 on mouseUp
 --
 ----------------- PARAMETERS ----------------------------
 --

 -- channels startMUX to endMUX inclusive will be sampled
2 put 0 into startMUX
3 put 7 into endMUX

 --

15

Scripting

4 global XCMDErr,timeStamp
5 global sampleInterval,npoints,FSTable
6 global w0,w1,w2,w3,w4,w5,w6,w7

7 put the seconds into timeStamp

 -- put global NAMES into a list
8 put "w0,w1,w2,w3,w4,w5,w6,w7" into gList
 -- create a corresponding list of marks
9 put "0,1,2,3,4,5,6,7" into markList
10 put endMux-startMUX+1 into nChannels

11 put "Acquiring..."
12 AcqWave sampleInterval*nChannels, npoints, startMUX,
 endMUX,gList

 -- did an error occur?
13 if XCMDErr=0 then

14 put cd fld "HParamLegends" in cd "SysParams" into
 HParamLegends
15 put cd fld "HParams" in cd "SysParams" into HParams
16 put cd fld "ReadingLegends" in cd "SysParams" into
 ReadingLegends
17 put cd fld "Readings" in cd "SysParams" into Readings

18 put "Writing " & nChannels & " traces to disk..."
19 repeat with traceCtr=1 to nChannels
20 newTrace
21 get item (traceCtr+startMUX) in markList
22 put it into bg fld "Mark"

23 put the value of (item traceCtr in gList) into bg field
 "data"

24 put HParamLegends into bg fld "HParamLegends"
25 put ReadingLegends into bg fld "ReadingLegends"
26 put Readings into bg fld "Readings"

16

Scripting

27 repeat with j=1 to 2

17

Scripting

28 put line j in HParams into line j in bg fld "HParams"
29 end repeat

30 put sampleInterval*nChannels into line 3 in bg fld
 "HParams"
31 get line (startMUX+traceCtr) in FSTable
32 put it into line 4 in bg fld "HParams"

33 send openCard
34 end repeat

35 else
36 ErrNum XCMDErr
37 end if

38 send openCard -- plot the wave
39 put empty
40 select after last char of field "commentField"
41 end mouseUp

In all Multiple-type buttons, the A/D channels to be sampled are entered as starting and ending channels (inclusive)
in the parameter block (lines 2 and 3). Note that channels must be contiguous, so that you cannot request that only
channels 1, 3 and 5 be sampled. The results from each channel must be returned in global variables and these are
declared in line 6.

Tip:

For globals that will receive waves, it's a good idea to use the same names in all your scripts (w0, w1, w2, ...

in this example). If you make up 8 different names each time you create a Multiple-type button, HyperCard
will need to set aside additional memory for each unique name, which could slow down performance or cause
you to eventually run out of memory. WaveTrak declares 16 standard globals named w0 to w15 which you

should use to store waves.

18

Scripting

Line 8 illustrates the important concept of setting up wave arrays. We saw that another way of passing a global
name to an XCMD is to first put the name into a variable, then pass that variable by value. This method makes it
even easier to pass several globals by putting their names into a comma-delimited list. You will notice that line 8
duplicates the names of the 8 globals declared previously (no spaces anywhere) and puts this list into a variable,
gList. WaveTrak XCMDs have been designed to expect multiple globals as comma-delimited items, consistent

with HyperCard's convention of separating items in a list. Line 9 assigns a mark to correspond to each global in the
list. Each mark will be stored in the corresponding 'Mark' field when the trace card is created.

The number of A/D channels is computed in line 10 (+1 because startMUX to endMUX is inclusive). Line 11
alerts the user in the message window that the acquisition is about to begin, and line 12 calls AcqWave to do the

work. There are two differences in this call compared to the one in the Single button. First, WaveTrak acquisition
XCMDs have been designed to maintain the requested sampling rate for each channel when multiple channels are
acquired. For instance, if you call AcqWave with only one channel to be sampled at a rate of 100 µs/sample, then

call it again with two channels, again requesting a sample rate of 100 µs/sample, both channels will be sampled at
100 µs/sample. That is, the time between two samples from the first channel will be 100 µs, as will be the time
between two samples from the second channel. The converter therefore needed to sample data at an effective
average rate of 50 µs/sample to conserve the requested rate for each of the two channels.

Technical note:

WaveTrak performs synchronous acquisition (or as close to synchronous as the MacADIOS II hardware
will allow). Therefore, with two channels in the example above, acquisitions from the first and second
channels would actually be 7 µs apart, with a period of 100 µs between pairs of samples. See the chapter
on WaveTrak XCMDs for details about acquisition timing (Fig. 11-1).

Therefore the effective sampling rate demanded of the converter will increase with the number of channels
requested. If you select a fast rate for a single channel, you could exceed the converter specification if you then
request the same rate for many channels. The Multiple buttons avoid this by scaling down the per channel sampling
rate by the number of channels requested (sampleInterval*nChannels).

19

Scripting

The second important difference is that the global names are passed in the variable gList, rather than as a quoted

string. Passing the names in a variable may not be as intuitive, but is much more flexible because the script itself
can modify which globals are passed simply by changing the contents of gList (see the TrOverlay handler in

the trace background script for a good example).

Tip:

Don't worry if you pass 8 global names in gList but sample less than 8 channels; AcqWave and related

XCMDs will simply ignore the other global names. Also don't worry if you start sampling with channel 4,
5 ... for example. Although results will always be returned starting in w0, w1... , the data will be correctly

extracted in the loop beginning at line 19 and the proper marks assigned.

Line 13 checks if AcqWave was successful, and if so, proceeds to create the traces. Lines 14-17 simply copy the

default fields into variables, since accessing a local variable is faster than reading from a field in another card. Line
18 informs the user that the data are being written to disk; a repeat loop (line 19) is the most efficient way to cycle
through the results. After each new trace is created (line 20), the appropriate mark is extracted from markList by
offsetting the item number by startMUX (line 21). This is needed so that channel ranges that don't begin at zero
will retrieve the correct marks. Line 22 overwrites the default mark entered by newTrace.

Line 23 illustrates another important aspect of wave arrays. We know that we have our data in globals w0, w1,
w2 ..., but how do we get these values back in a repeat loop? (item traceCtr in gList) will take on the

values "w0", "w1", "w2" ... as the loop iterates, but we don't want the names of the globals, but rather their contents
(i.e. the waves they contain). The standard HyperCard function the value of does what we need by returning

the contents of a variable when you pass it the variable name. The contents are then copied to the 'data' field, which
will be a fresh background field for each new trace card.

Lines 24-29 copy default parameters and readings into each new trace; the effective sampling interval was scaled
down by the number of channels (line 30). The correct full scale information is retrieved from FSTable by
offsetting the line number with startMUX. Line 33 will force each new wave to be drawn as it's stored to give the

user

20

Scripting

visual feedback; you can remove this line to increase execution speed. The remaining instructions perform the same
function as in the Single button script.

These two buttons serve as a foundation upon which all other acquisition buttons are built in WaveTrak. See the
later chapters for a detailed description of AcqWave and related XCMDs.

You may have noticed that scripts can be placed in a number of locations within a stack, including buttons, cards,
backgrounds and the stack script itself. How far up the hierarchy you place a handler will depend on how popular
that function is within your stack. We have found that it is most intuitive to put the instructions that a button
executes right in that button's script. Eventually, you will no doubt write more complex scripts that can be called
from many places in your stack. We recommend that you create a blank stack with a single card (using 'New
Stack...' not 'New WaveTrak Stack' in 'File' menu) and place your custom code in the script of the new stack. Add a
start using myCustomStackName instruction in WaveTrak's openStack handler to add your new custom

stack to the message hierarchy. This is how WaveTrak accesses its A/D and DSP libraries. There are two
advantages to using your own stack to hold your scripts. First, the existing WaveTrak stack script is already quite
large, and there is a 30000 character limit on the size of any single script. By creating your own stack script, you
exploit the 30000 character limit for your own code. Second, your custom code will not be accessible if you placed
it in with the master stack script, then upgrade to a new version of WaveTrak. By collecting your own code into one
stack, all you have to do with a new version of WaveTrak is to add a start using myCustomStackName
instruction in the new master's openStack handler.

Trace Card Globals and Wave Descriptors

There are eight important globals intimately associated with trace cards that
deserve special mention. These eight globals, called wave descriptors, precisely
describe a wave in real-world units. If you follow the guidelines outlined in this
section, any new buttons you write will be automatically compatible with all of the
trace cards' export, plotting, cursor readout and zooming capabilities described in
earlier chapters. This will also ensure that any new data you generate can be
directly processed by the many analysis buttons in the Button Bank with little or no
modification.

Each time you go to a new trace card, the openCard handler copies the wave
from the background field named 'data' to a global variable called theWave.
Equally important is that the name of theWave (i.e. the string "theWave") is placed
in a global called gList.

21

Scripting

All standard WaveTrak functions that operate on one or more waves expect the
name(s) of the global variables containing these waves to be passed in the global
gList. The script of the 'Make Sine' button in the Button Bank is a good
example of how to log multiple waves with WaveTrak's standard operations. Here,
two sine waves are generated and stored into the globals w0 and w1. By placing
their names (i.e. put "w0,w1" into gList) as a comma-delimited list into
gList, you ensure that both waves will be plotted and zoomed together.

The remaining wave descriptors are stored in the following globals, and allow a
complete description of a wave. The X values, in real units, of the first and last
points, contained in leftX and rightX, define the range of the acquisition in the
horizontal direction, whereas topY and bottomY define the full-scale vertical
range. The first pair of globals allow functions to map a wave's point numbers into
true time (or any other dimension) values, and the second pair will map the full-
scale Y values into real units of measure, such as mV.

Example 1:

You acquire a 1000 point wave at 10 µs/sample. The data are encoded with 12 bits
of resolution, as signed integers. You also know that the converter will output the
maximum count of 2047 when fed a +10 V input, and the minimum count of -2048
with -10 V. This is how you would define the four globals:
• leftX = 0, because the first point of any wave in the time domain is defined as
time 0 (Fig. 9-1).
• rightX = time corresponding to the last point = sample Interval*(number of
points-1) = 10µs*(1000-1) = 9990µs.
• topY = 10 V or 10000 mV
• bottomY = -10 V or -10000 mV.

In reality, WaveTrak functions don't care much about these four globals; they
merely serve to linearly map X,Y values of raw waves (i.e. point numbers and
integer counts from the A/D converter, respectively) into units that are more
meaningful to the user (i.e. µs and mV, respectively). You are simply telling
WaveTrak: "when the cursor is at the very top right corner of the display window,
write 9990 µs and +10000 mV as the cursor readout", or in the case of Copy as Y:
"when a point in an integer wave has the value -2048, send -10000 mV to the
clipboard". Any intermediate X or Y values will be linearly mapped according to
these four globals.

22

Scripting

23

Scripting

To complete the description of any signal, you have to define the units used for
both X and Y values. Example 1 can be modified as follows, without changing the
meaning of the data:

Example 2:

• leftX = 0.
• rightX = 9.990
• topY = 10.0
• bottomY = -10.0
• Xunit = "ms"
• Yunit = "V"

Here we defined the time and voltage in milliseconds and volts, adjusting the range
of the first four globals accordingly. This is what will be displayed by the cursor
readout or exported using Copy as Y. You are free to choose the ranges and units
that best suit your data. A good example is in the spectral analysis buttons, where
the X and Y units are changed to the frequency domain (Hz and dB). By updating
these standard globals, the same plotting and exporting functions will correctly
handle the new data.

One final global is used frequently in a wave description: the baseline. This value
is copied from the Readings field by openCard and is used to draw the horizontal
baseline in the display window, as well as the value about which trace areas are
computed by the 'Trace Area' and other buttons. A wave's baseline is essential if
you want to analyze the AC component of a signal that floats on a variable DC
level. The baseline is always interpreted in relation to topY and bottomY.

The advantage of this mechanism of wave description is that once you define these
eight globals, you can be sure that WaveTrak's standard functions will plot, export
and analyze your waves correctly. For example, the ReplotWave handler in the
stack script is widely used to redraw the display after a dialog box is dismissed, for
instance. If you place the names of 16 globals in gList that you want to overlay for
example, your plot will be correctly updated from anywhere within the stack until
you (or one of WaveTrak's scripts) change the values of these eight globals. One
immediate consequence is that all waves logged together in gList must have the
same number of points, be of the same type, and have the same leftX, rightX,
topY and bottomY parameters, as well as identical Xunit and Yunit, or the result

24

Scripting

of any overlay will either generate an error or be meaningless.

25

Scripting

These guidelines may appear somewhat complicated at first, but after examining a
few of the standard scripts in the buttons, and trying out a few of your own, we are
sure you will quickly become comfortable with writing scripts which conform to
the standard environment. The advantages far outweigh the minimal initial effort.

In Summary

• A wave is a set of points, evenly spaced in time (or other dimension), along with
information specifying the data type and the number of points it contains.
Elements in a wave can be integers or floating point numbers.

• Wave descriptors (stored in global variables) further describe a wave, supplying
information such as vertical and horizontal range, units of measure and baseline.

• XCMDs and XFCNs can only return data in global variables. AcqWave and
related commands expect the names of globals where you want your waves
returned.

• HyperCard fields can store a maximum of 30000 bytes, which is the upper limit
for the size of encoded waves that can be saved in trace cards. Waves
manipulated in memory are limited only by RAM (which can be greatly
extended with virtual memory).

• Use the example scripts from the Single and Multiple buttons to construct your
own acquisition buttons, or expand the scripts in the Import XY and Paste XY
buttons to enhance the importing capabilities if you own stack.

26

